## **Electrolysis Hydrogen Generator with Renewable Energy**

#### Converting and storing renewable energy as hydrogen and then using it to generate electricity with Fuel Cells.

Although wind and solar power are making it possible to move away from a carbon society, some problems must still be solved to produce hydrogen from renewable energies at stable operation levels. This is where **Enoah** provides its customizable electrolysis hydrogen generator for renewable energy use.

## H<sub>2</sub> Production

## Renewable

# H<sub>2</sub> Storage Tank

## **Technical Specifications**

|  | Main<br>Configuration            | Water<br>electrolysis<br>tank                   | Flow: $0 \sim 2$ N m <sup>2</sup> /h Pressure: $\sim 0.8$ MPa.G Purity: 5N or more                                                         |
|--|----------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|  |                                  | PSA                                             | 65A × 700L                                                                                                                                 |
|  |                                  | Refrigerator                                    | Cooling capacity: $6,000W@15^{\circ}C$ (water temperature) Flow Monitor: Included                                                          |
|  | Condition<br>Monitoring          | Input<br>Section<br>Output<br>Section<br>Others | Tap-water:<br>Hydrogen: Pressure, Temperature, Dew Point<br>Water leakage detection, Current & Voltage monitoring,<br>communication status |
|  | Outer<br>Interface<br>Connection | Piping<br>Outer<br>Signals                      | Exhaust Hydrogen and Oxygen, Pure Water Supply, Drain,<br>Coolant<br>Signaling Ready, Abnormal External Signals                            |
|  | Controlling<br>Element           | Touch Panel                                     | Monitoring & Manual Operation, Alarms, etc.                                                                                                |
|  | External<br>Dimensions           | $W \times H \times D$                           | 1800 × 1900 × 1000 (mm)                                                                                                                    |

#### Features :

- Production of purified water from tap water
- Hydrogen generation through PEM water electrolysis stack
- PSA dehumidification provides high purity grade hydrogen

## **Configuration :**

- Water Purification Device , Water Electrolysis Stack , PSA
- > Pure Water Circulation Loop , Dilution Air Blowers ,etc.

#### Electrolysis H<sub>2</sub> Generator with Renewable Energy



### Cummins On-Site Hydrogen Generator [Alkaline Type and PEM Type]

It is plug-and-play, safe, and reliable, can be operated continuously as well as dynamically, and delivers high purity water. The complete system comprises a water supply system, water purification equipment, power conversion, water purification, and remote service.

> The **Alkaline** ion exchange membranes remove OH- ions from water and produce hydrogen. This technology is based on Cummins' IMET® membranes and provides the safest, most reliable system available.

| Alkaline-type technology delivers HySTAT®  |  |  |  |
|--------------------------------------------|--|--|--|
| ydrogen generators aimed at the industrial |  |  |  |
| sector worldwide,                          |  |  |  |
| where reliability is required in the daily |  |  |  |
|                                            |  |  |  |

| where reliability is required in the daily |   |  |
|--------------------------------------------|---|--|
| supply of hydrogen.                        | P |  |

| T®      | Specifications                   | 11/01/10/10/00                                        | Injoining ou 10      | 11/51/41 @ 100 10 |  |  |  |
|---------|----------------------------------|-------------------------------------------------------|----------------------|-------------------|--|--|--|
|         | Output Pressure                  | 10 barg-27 barg                                       |                      |                   |  |  |  |
| ai      | Number of Stack Cells            | 1                                                     | 4                    | 6                 |  |  |  |
|         | Rated H <sub>2</sub> Flow        | 15Nm³/h                                               | 60Nm <sup>3</sup> /h | 100Nm³/h          |  |  |  |
| '       | Rated Input Voltage              | 80kW                                                  | 80kW 300kW           |                   |  |  |  |
|         | Power Consumption(AC, Auxiliary) | 5.0-5.4kWh/Nm <sup>3</sup>                            |                      |                   |  |  |  |
| al<br>, | H <sub>2</sub> Flow Range        | 40-100%                                               | 10-100%              | 5-100%            |  |  |  |
|         | H <sub>2</sub> Purity            | 99.998%<br>O2<2ppm,N2<12ppm(higher purities optional) |                      |                   |  |  |  |
|         | Tap Water Consumption Rate       | <1.7liters/Nm <sup>3</sup> H <sub>2</sub>             |                      |                   |  |  |  |
|         | Container Size                   | 20ft conteiner                                        | 40ft conteiner       | 40ft conteiner    |  |  |  |

HvSTAT®-15-10/30 HvSTAT®-60-10

|  | PEM-type technology delivers      | PEM-Type Technical<br>Specifications | HyLYZER®-100-30                                       | HyLYZER®-400-30       | HyLYZER®-3,000-30          |
|--|-----------------------------------|--------------------------------------|-------------------------------------------------------|-----------------------|----------------------------|
|  | HyLYZER® hydrogen generators,     | Output Pressure                      | 30 barg                                               |                       |                            |
|  | which are particularly suited for | Number of Stack Cells                | 1                                                     | 2                     | 10                         |
|  | large industrial and energy       | Rated H <sub>2</sub> Flow            | 100Nm <sup>3</sup> /h                                 | 400Nm <sup>3</sup> /h | 3,000Nm <sup>3</sup> /h    |
|  | applications.                     | Rated Input Voltage                  | 500kW                                                 | 2MW                   | 15MW                       |
|  |                                   | Power Consumption(AC,Auxiliary)      | 5.0-5.4kWh/Nm <sup>3</sup>                            |                       |                            |
|  |                                   | H <sub>2</sub> Flow Range            | 1-100%                                                |                       |                            |
|  |                                   | H <sub>2</sub> Purity                | 99.998%<br>O2<2ppm,N2<12ppm(higher purities optional) |                       |                            |
|  |                                   | Tap Water Consumption Rate           | <1.4liters/Nm <sup>3</sup> H <sub>2</sub>             |                       |                            |
|  |                                   | Container Size                       | 40ft conteiner                                        | 40ft +20ft conteiner  | 600m <sup>2</sup> (indoor) |
|  |                                   |                                      |                                                       | note that the technic |                            |

The **PEM model** is driven by the latest technology after over a decade of development. In 2014, it was the first hydrogen generator to supply at MW-scale, displaying its outstanding performance. The hydrogen changes into molecules to form hydrogen gas. The technology can operate at high current densities and pressures and, in combination with renewable energy, is useful for projects with fluctuating demand or where space is limited.

this device, as provided by the manufacturer in Japan, may differ depending on the country in which you plan to use the device. Please consult the relevant documentation or seek expert advice if you have any concerns or questions about using this device in a particular location.



150-1, IMAE, HANAMOTO-CHO, TOYOTA-SHI, AICHI, 470-0334, JAPAN TEL: 0565-47-7212 FAX: 0565-47-7222 Email : info@enoah.co.jp URL:http://www.enoah.co.jp



HySTAT@-100-10